Chase Joyner

882 Homework 5

December 9, 2016

Problem 1:

a) Notice that for model j, the likelihood function is

$$\mathbf{Y} \mid \mathbf{X}_j \sim MVN(\mathbf{X}_j\boldsymbol{\beta}, \sigma_j^2 \mathbf{I})$$

where ${\bf I}$ is an $n\times n$ identity matrix.

$$m(\mathbf{y} \mid M = j) = \int \int f(\mathbf{y} \mid \boldsymbol{\beta}_j, \sigma_j^2) \pi(\boldsymbol{\beta}_j \mid \sigma_j^2) \pi(\sigma_j^2) d\boldsymbol{\beta}_j d\sigma_j^2$$

$$= \int \int (2\pi\sigma_j^2)^{-\frac{n}{2}} \exp\left\{-\frac{1}{2\sigma_j^2} (\mathbf{Y} - \mathbf{X}_j \boldsymbol{\beta}_j)' (\mathbf{Y} - \mathbf{X}_j \boldsymbol{\beta}_j)\right\}$$

$$\left|2\pi\sigma_j^2 \boldsymbol{\Sigma}_{j0}\right|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2\sigma_j^2} (\boldsymbol{\beta}_j - \boldsymbol{\beta}_{j0})' \boldsymbol{\Sigma}_{j0}^{-1} (\boldsymbol{\beta}_j - \boldsymbol{\beta}_{j0})\right\}$$

$$\frac{b_{j0}^{a_{j0}}}{\Gamma(a_{j0})} (\sigma_j^2)^{-a_{j0}-1} \exp\left\{-\frac{b_{j0}}{\sigma_j^2}\right\} d\boldsymbol{\beta}_j d\sigma_j^2.$$

Define C_j to be

$$C_j = (2\pi)^{-\frac{n+p_j}{2}} \frac{b_{j0}^{a_{j0}}}{\Gamma(a_{j0})} |\mathbf{\Sigma}_{j0}|^{-\frac{1}{2}}.$$

Then, we have that

$$\begin{split} m(\mathbf{y} \mid M = j) &= C_j \int \left(\left(\sigma_j^2 \right)^{-\frac{n+p_j}{2} - a_{j0} - 1} \exp\left\{ -\frac{b_{j0}}{\sigma_j^2} \right\} \times \\ &\int \exp\left\{ -\frac{1}{2\sigma_j^2} \Big[(\mathbf{Y} - \mathbf{X}_j \boldsymbol{\beta}_j)' (\mathbf{Y} - \mathbf{X}_j \boldsymbol{\beta}_j) + (\boldsymbol{\beta}_j - \boldsymbol{\beta}_{j0})' \boldsymbol{\Sigma}_{j0}^{-1} (\boldsymbol{\beta}_j - \boldsymbol{\beta}_{j0}) \Big] \right\} \right) d\boldsymbol{\beta}_j d\sigma_j^2 \\ &= C_j \int \left(\left(\sigma_j^2 \right)^{-\frac{n+p_j}{2} - a_{j0} - 1} \exp\left\{ -\frac{b_{j0}}{\sigma_j^2} - \frac{1}{2\sigma_j^2} \Big[\mathbf{Y}' \mathbf{Y} + \boldsymbol{\beta}_{j0}' \boldsymbol{\Sigma}_{j0}^{-1} \boldsymbol{\beta}_{j0} - \boldsymbol{\mu}' \mathbf{A} \Big] \right\} \times \\ &\int \exp\left\{ -\frac{1}{2\sigma_j^2} (\boldsymbol{\beta}_j - \boldsymbol{\mu})' \mathbf{C}^{-1} (\boldsymbol{\beta}_j - \boldsymbol{\mu}) \right\} \right) d\boldsymbol{\beta}_j d\sigma_j^2, \end{split}$$

where we define

$$egin{aligned} oldsymbol{\mu} &= \mathbf{C} imes \left(\mathbf{\Sigma}_{j0}^{-1} oldsymbol{eta}_{j0} + \mathbf{X}_j' \mathbf{Y}
ight) \ \mathbf{C} &= \left(\mathbf{X}_j' \mathbf{X}_j + \mathbf{\Sigma}_{j0}^{-1}
ight)^{-1} \ \mathbf{A} &= \mathbf{\Sigma}_{j0}^{-1} oldsymbol{eta}_{j0} + \mathbf{X}_j' \mathbf{Y}. \end{aligned}$$

Then, by integrating the two integrals, we find

$$\begin{split} m(\mathbf{y} \mid M = j) &= C_j \int \left(\left(\sigma_j^2 \right)^{-\frac{n+p_j}{2} - a_{j0} - 1} \exp\left\{ -\frac{b_{j0}}{\sigma_j^2} - \frac{1}{2\sigma_j^2} \left[\mathbf{Y}' \mathbf{Y} + \beta_{j0}' \boldsymbol{\Sigma}_{j0}^{-1} \beta_{j0} - \boldsymbol{\mu}' \mathbf{A} \right] \right\} \times \\ &\int \exp\left\{ -\frac{1}{2\sigma_j^2} (\beta_j - \boldsymbol{\mu})' \mathbf{C}^{-1} (\beta_j - \boldsymbol{\mu}) \right\} \right) d\beta_j d\sigma_j^2 \\ &= C_j^{\star} \int \left(\sigma_j^2 \right)^{-\frac{n}{2} - a_{j0} - 1} \exp\left\{ -\frac{b_{j0}}{\sigma_j^2} - \frac{1}{2\sigma_j^2} \left[\mathbf{Y}' \mathbf{Y} + \beta_{j0}' \boldsymbol{\Sigma}_{j0}^{-1} \beta_{j0} - \boldsymbol{\mu}' \mathbf{A} \right] \right\} d\sigma_j^2 \\ &= C_j^{\star} \int \left(\sigma_j^2 \right)^{-\frac{n}{2} - a_{j0} - 1} \exp\left\{ -\frac{b_{j0}}{\sigma_j^2} - \frac{1}{2\sigma_j^2} \left[\mathbf{Y}' \mathbf{Y} + \beta_{j0}' \boldsymbol{\Sigma}_{j0}^{-1} \beta_{j0} - \boldsymbol{\mu}' \mathbf{A} \right] \right\} d\sigma_j^2 \\ &= C_j^{\star} \int \left(\sigma_j^2 \right)^{-\frac{n}{2} - a_{j0} - 1} \exp\left\{ -\frac{b_{j0}}{\sigma_j^2} - \frac{1}{2\sigma_j^2} \left[\mathbf{Y}' \mathbf{Y} + \beta_{j0}' \boldsymbol{\Sigma}_{j0}^{-1} \beta_{j0} - \boldsymbol{\mu}' \mathbf{A} \right] \right\} d\sigma_j^2 \\ &= C_j^{\star} \frac{\Gamma(\alpha_j)}{B_j^{\alpha_j}} \end{split}$$

where

$$C_{j}^{\star} = (2\pi)^{-\frac{n}{2}} \frac{b_{j0}^{a_{j0}}}{\Gamma(a_{j0})} |\mathbf{\Sigma}_{j0}|^{-\frac{1}{2}} |\mathbf{C}|^{\frac{1}{2}}$$
$$B_{j} = \frac{1}{2} \Big[\mathbf{Y}' \mathbf{Y} + \beta_{j0}' \mathbf{\Sigma}_{j0}^{-1} \beta_{j0} - \boldsymbol{\mu}' \mathbf{A} \Big] + b_{j0}$$
$$\alpha_{j} = \frac{n}{2} + a_{j0}.$$

b) Now we compute the Bayes factor for

$$H_0$$
: Model 1 and H_1 : Model 2,

which is given by the following quantity

$$B_{01} = \frac{m_0(\mathbf{y})}{m_1(\mathbf{y})} = \frac{m(\mathbf{y} \mid M = 1)}{m(\mathbf{y} \mid M = 2)}.$$

- c) There are many methods to approximating B_{01} , which can be achieved by approximating $m(\mathbf{y} \mid M = j)$ with $\widehat{m}(\mathbf{y} \mid M = j)$. Here, we discuss three methods to finding $\widehat{m}(\mathbf{y} \mid M = j)$. Here, we will denote $\boldsymbol{\theta}_j = (\boldsymbol{\beta}_j, \sigma_j^2)'$.
 - 1) Monte Carlo approximation. We will compute

$$\widehat{m}(\mathbf{y} \mid M = j) = \frac{1}{S} \sum_{t=1}^{S} f(\mathbf{y} \mid \boldsymbol{\theta}_{j}^{(t)})$$

where we sample $\boldsymbol{\theta}_{j}^{(t)} \sim \pi_{j}(\boldsymbol{\theta})$, i.e. sample $\boldsymbol{\beta}_{j}^{(t)} \mid \sigma_{j}^{2(t-1)} \sim N(\boldsymbol{\beta}_{j0}, \sigma_{j}^{(t-1)}\boldsymbol{\Sigma}_{j0})$ and $\sigma_{j}^{(t)} \sim IG(a_{j0}, b_{j0})$. Then, by the law of large numbers,

$$\widehat{m}(\mathbf{y} \mid M = j) \to E[f(\mathbf{y} \mid \boldsymbol{\theta}_j)].$$

A major problem with this approach is that if the prior distribution is not very informative, then this process is extremely inefficient and will require S to be very large.

2) Importance sampling. Here, we will make use of an importance distribution $\pi_j^{\star}(\boldsymbol{\theta})$. Sampling $\boldsymbol{\theta}_j^{(t)} \sim \pi_j^{\star}(\boldsymbol{\theta})$, compute the approximation

$$\widehat{m}(\mathbf{y} \mid M = j) = \frac{1}{S} \sum_{t=1}^{S} w_t f(\mathbf{y} \mid \boldsymbol{\theta}_j^{(t)})$$

where the weight w_t is given by

$$w_{t} = \frac{\pi_{j}(\boldsymbol{\theta}_{j}^{(t)})}{\pi_{j}^{\star}(\boldsymbol{\theta}_{j}^{(t)})} = \frac{\pi(\boldsymbol{\beta}_{j}^{(t)} \mid \sigma_{j}^{2(t)})\pi(\sigma_{j}^{2(t)})}{\pi_{\beta}^{\star}(\boldsymbol{\beta}_{j}^{(t)} \mid \sigma_{j}^{2(t)})\pi_{\sigma}^{\star}(\sigma_{j}^{2(t)})}.$$

It can be shown that the importance distribution in this fashion does not impact inference and thus should be chosen in a good way. We will use the LSE estimates and impose

$$\begin{aligned} \pi^{\star}_{\beta} \big(\boldsymbol{\beta}_j \mid \sigma_j^2 \big) &= N \big((\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}' \mathbf{y}, \sigma_j^2 (\mathbf{X}' \mathbf{X})^{-1} \big) \\ \pi^{\star}_{\sigma} \big(\sigma_j^2 \big) &= IG(a, b) \end{aligned}$$

where a and b are chosen such that $\frac{b}{a-1} = MSE$ and

3) Importance sampling on steroids. This is the last method and is similar to method 2. The difference is now that

$$\widehat{m}(\mathbf{y} \mid M = j) = \frac{\sum_{t=1}^{S} w_t f\left(\mathbf{y} \mid \boldsymbol{\theta}_j^{(t)}\right)}{\sum_{t=1}^{S} w_t}$$

d) Here we implement a small simulation study to compare these three techniques. Suppose that model 1 and model 2 are

Model 1:
$$Y_i = 3 + 0.5x_{1i} + 1.25x_{2i} + e_{1i},$$
 $e_{1i} \stackrel{iid}{\sim} N(0, 1)$
Model 2: $Y_i = 3 + 0.5x_{1i} + 1.25x_{3i} + e_{2i},$ $e_{2i} \stackrel{iid}{\sim} N(0, 1.2^2).$

That is, not a full versus reduced model scenario. We will generate our data under model 1. To do this, we generate covariate x_1 from N(2, 1) and covariates x_2 and x_3 from a Binom(1, 0.5). Before we approximate the Bayes factor, we first compute the exact Bayes factor from problem 1. Here we impose that the prior distributions are

$$\begin{array}{cccc} \boldsymbol{\beta}_1 \mid \sigma_1^2 & \sim & N(\boldsymbol{0}_{p_1}, \mathbf{T}_{p_1}) \\ \sigma_1^2 & \sim & IG(1, 1) \end{array} \qquad \qquad \boldsymbol{\beta}_2 \mid \sigma_2^2 & \sim & N(\boldsymbol{0}_{p_2}, \mathbf{T}_{p_2}) \\ \sigma_2^2 & \sim & IG(1, 1), \end{array}$$

where $\mathbf{0}_{p_j}$ is a vector of size p_j whose entries are all ones and \mathbf{T}_{p_j} is a $p_j \times p_j$ diagonal matrix whose entries are all 1000. Using this formulation, the expression in problem 1, and the generated data, the exact Bayes factor is given by

$$B_{01} = \frac{C_1^{\star}}{C_2^{\star}} \cdot \frac{\Gamma(\alpha_1)}{B_1^{\alpha_1}} \cdot \frac{B_2^{\alpha_2}}{\Gamma(\alpha_2)} = 8877.709.$$

Now, implementing the three methods, we obtained an estimated Bayes factor of

Method 1:
$$\hat{B}_{01} = 98876.07$$

Method 2: $\hat{B}_{01} = 8961.766$
Method 3: $\hat{B}_{01} = 8549.591$.

As we expected, method 1 did not work very well. Although it gave the correct decision, it does not estimate the exact Bayes factor well. Methods 2 and 3 work pretty similarly and have an approximation that is very close to the exact Bayes factor.