Chase Joyner

882 Homework 5
December 9, 2016

Problem 1:

a) Notice that for model j, the likelihood function is

$$
\mathbf{Y} \mid \mathbf{X}_{j} \sim M V N\left(\mathbf{X}_{j} \boldsymbol{\beta}, \sigma_{j}^{2} \mathbf{I}\right)
$$

where \mathbf{I} is an $n \times n$ identity matrix.

$$
\begin{aligned}
& m(\mathbf{y} \mid M=j)= \iint f\left(\mathbf{y} \mid \boldsymbol{\beta}_{j}, \sigma_{j}^{2}\right) \pi\left(\boldsymbol{\beta}_{j} \mid \sigma_{j}^{2}\right) \pi\left(\sigma_{j}^{2}\right) d \boldsymbol{\beta}_{j} d \sigma_{j}^{2} \\
&= \iint\left(2 \pi \sigma_{j}^{2}\right)^{-\frac{n}{2}} \exp \left\{-\frac{1}{2 \sigma_{j}^{2}}\left(\mathbf{Y}-\mathbf{X}_{j} \boldsymbol{\beta}_{j}\right)^{\prime}\left(\mathbf{Y}-\mathbf{X}_{j} \boldsymbol{\beta}_{j}\right)\right\} \\
&\left|2 \pi \sigma_{j}^{2} \boldsymbol{\Sigma}_{j 0}\right|^{-\frac{1}{2}} \exp \left\{-\frac{1}{2 \sigma_{j}^{2}}\left(\boldsymbol{\beta}_{j}-\boldsymbol{\beta}_{j 0}\right)^{\prime} \boldsymbol{\Sigma}_{j 0}^{-1}\left(\boldsymbol{\beta}_{j}-\boldsymbol{\beta}_{j 0}\right)\right\} \\
& \frac{b_{j 0}^{a_{j 0}}}{\Gamma\left(a_{j 0}\right)}\left(\sigma_{j}^{2}\right)^{-a_{j 0}-1} \exp \left\{-\frac{b_{j 0}}{\sigma_{j}^{2}}\right\} d \boldsymbol{\beta}_{j} d \sigma_{j}^{2} .
\end{aligned}
$$

Define C_{j} to be

$$
C_{j}=(2 \pi)^{-\frac{n+p_{j}}{2}} \frac{b_{j 0}^{a_{j 0}}}{\Gamma\left(a_{j 0}\right)}\left|\boldsymbol{\Sigma}_{j 0}\right|^{-\frac{1}{2}}
$$

Then, we have that

$$
\begin{aligned}
m(\mathbf{y} \mid M=j)= & C_{j} \int\left(\left(\sigma_{j}^{2}\right)^{-\frac{n+p_{j}}{2}-a_{j 0}-1} \exp \left\{-\frac{b_{j 0}}{\sigma_{j}^{2}}\right\} \times\right. \\
& \left.\int \exp \left\{-\frac{1}{2 \sigma_{j}^{2}}\left[\left(\mathbf{Y}-\mathbf{X}_{j} \boldsymbol{\beta}_{j}\right)^{\prime}\left(\mathbf{Y}-\mathbf{X}_{j} \boldsymbol{\beta}_{j}\right)+\left(\boldsymbol{\beta}_{j}-\boldsymbol{\beta}_{j 0}\right)^{\prime} \boldsymbol{\Sigma}_{j 0}^{-1}\left(\boldsymbol{\beta}_{j}-\boldsymbol{\beta}_{j 0}\right)\right]\right\}\right) d \boldsymbol{\beta}_{j} d \sigma_{j}^{2} \\
= & C_{j} \int\left(\left(\sigma_{j}^{2}\right)^{-\frac{n+p_{j}}{2}-a_{j 0}-1} \exp \left\{-\frac{b_{j 0}}{\sigma_{j}^{2}}-\frac{1}{2 \sigma_{j}^{2}}\left[\mathbf{Y}^{\prime} \mathbf{Y}+\boldsymbol{\beta}_{j 0}^{\prime} \boldsymbol{\Sigma}_{j 0}^{-1} \boldsymbol{\beta}_{j 0}-\boldsymbol{\mu}^{\prime} \mathbf{A}\right]\right\} \times\right. \\
& \left.\int \exp \left\{-\frac{1}{2 \sigma_{j}^{2}}\left(\boldsymbol{\beta}_{j}-\boldsymbol{\mu}\right)^{\prime} \mathbf{C}^{-1}\left(\boldsymbol{\beta}_{j}-\boldsymbol{\mu}\right)\right\}\right) d \boldsymbol{\beta}_{j} d \sigma_{j}^{2}
\end{aligned}
$$

where we define

$$
\begin{aligned}
\boldsymbol{\mu} & =\mathbf{C} \times\left(\boldsymbol{\Sigma}_{j 0}^{-1} \boldsymbol{\beta}_{j 0}+\mathbf{X}_{j}^{\prime} \mathbf{Y}\right) \\
\mathbf{C} & =\left(\mathbf{X}_{j}^{\prime} \mathbf{X}_{j}+\boldsymbol{\Sigma}_{j 0}^{-1}\right)^{-1} \\
\mathbf{A} & =\boldsymbol{\Sigma}_{j 0}^{-1} \boldsymbol{\beta}_{j 0}+\mathbf{X}_{j}^{\prime} \mathbf{Y}
\end{aligned}
$$

Then, by integrating the two integrals, we find

$$
\begin{aligned}
m(\mathbf{y} \mid M=j)= & C_{j} \int\left(\left(\sigma_{j}^{2}\right)^{-\frac{n+p_{j}}{2}-a_{j 0}-1} \exp \left\{-\frac{b_{j 0}}{\sigma_{j}^{2}}-\frac{1}{2 \sigma_{j}^{2}}\left[\mathbf{Y}^{\prime} \mathbf{Y}+\boldsymbol{\beta}_{j 0}^{\prime} \boldsymbol{\Sigma}_{j 0}^{-1} \boldsymbol{\beta}_{j 0}-\boldsymbol{\mu}^{\prime} \mathbf{A}\right]\right\} \times\right. \\
& \left.\int \exp \left\{-\frac{1}{2 \sigma_{j}^{2}}\left(\boldsymbol{\beta}_{j}-\boldsymbol{\mu}\right)^{\prime} \mathbf{C}^{-1}\left(\boldsymbol{\beta}_{j}-\boldsymbol{\mu}\right)\right\}\right) d \boldsymbol{\beta}_{j} d \sigma_{j}^{2} \\
= & C_{j}^{\star} \int\left(\sigma_{j}^{2}\right)^{-\frac{n}{2}-a_{j 0}-1} \exp \left\{-\frac{b_{j 0}}{\sigma_{j}^{2}}-\frac{1}{2 \sigma_{j}^{2}}\left[\mathbf{Y}^{\prime} \mathbf{Y}+\boldsymbol{\beta}_{j 0}^{\prime} \boldsymbol{\Sigma}_{j 0}^{-1} \boldsymbol{\beta}_{j 0}-\boldsymbol{\mu}^{\prime} \mathbf{A}\right]\right\} d \sigma_{j}^{2} \\
= & C_{j}^{\star} \int\left(\sigma_{j}^{2}\right)^{-\frac{n}{2}-a_{j 0}-1} \exp \left\{-\frac{b_{j 0}}{\sigma_{j}^{2}}-\frac{1}{2 \sigma_{j}^{2}}\left[\mathbf{Y}^{\prime} \mathbf{Y}+\boldsymbol{\beta}_{j 0}^{\prime} \boldsymbol{\Sigma}_{j 0}^{-1} \boldsymbol{\beta}_{j 0}-\boldsymbol{\mu}^{\prime} \mathbf{A}\right]\right\} d \sigma_{j}^{2} \\
= & C_{j}^{\star} \frac{\Gamma\left(\alpha_{j}\right)}{B_{j}^{\alpha_{j}}}
\end{aligned}
$$

where

$$
\begin{aligned}
C_{j}^{\star} & =(2 \pi)^{-\frac{n}{2}} \frac{b_{j 0}^{a_{j 0}}}{\Gamma\left(a_{j 0}\right)}\left|\boldsymbol{\Sigma}_{j 0}\right|^{-\frac{1}{2}}|\mathbf{C}|^{\frac{1}{2}} \\
B_{j} & =\frac{1}{2}\left[\mathbf{Y}^{\prime} \mathbf{Y}+\boldsymbol{\beta}_{j 0}^{\prime} \boldsymbol{\Sigma}_{j 0}^{-1} \boldsymbol{\beta}_{j 0}-\boldsymbol{\mu}^{\prime} \mathbf{A}\right]+b_{j 0} \\
\alpha_{j} & =\frac{n}{2}+a_{j 0}
\end{aligned}
$$

b) Now we compute the Bayes factor for

$$
H_{0}: \text { Model } 1 \quad \text { and } \quad H_{1}: \text { Model } 2
$$

which is given by the following quantity

$$
B_{01}=\frac{m_{0}(\mathbf{y})}{m_{1}(\mathbf{y})}=\frac{m(\mathbf{y} \mid M=1)}{m(\mathbf{y} \mid M=2)}
$$

c) There are many methods to approximating B_{01}, which can be achieved by approximating $m(\mathbf{y} \mid M=j)$ with $\widehat{m}(\mathbf{y} \mid M=j)$. Here, we discuss three methods to finding $\widehat{m}(\mathbf{y} \mid M=j)$. Here, we will denote $\boldsymbol{\theta}_{j}=\left(\boldsymbol{\beta}_{j}, \sigma_{j}^{2}\right)^{\prime}$.

1) Monte Carlo approximation. We will compute

$$
\widehat{m}(\mathbf{y} \mid M=j)=\frac{1}{S} \sum_{t=1}^{S} f\left(\mathbf{y} \mid \boldsymbol{\theta}_{j}^{(t)}\right)
$$

where we sample $\boldsymbol{\theta}_{j}^{(t)} \sim \pi_{j}(\boldsymbol{\theta})$, i.e. sample $\boldsymbol{\beta}_{j}^{(t)} \mid \sigma_{j}^{2(t-1)} \sim N\left(\boldsymbol{\beta}_{j 0}, \sigma_{j}^{(t-1)} \boldsymbol{\Sigma}_{j 0}\right)$ and $\sigma_{j}^{(t)} \sim I G\left(a_{j 0}, b_{j 0}\right)$. Then, by the law of large numbers,

$$
\widehat{m}(\mathbf{y} \mid M=j) \rightarrow E\left[f\left(\mathbf{y} \mid \boldsymbol{\theta}_{j}\right)\right]
$$

A major problem with this approach is that if the prior distribution is not very informative, then this process is extremely inefficient and will require S to be very large.
2) Importance sampling. Here, we will make use of an importance distribution $\pi_{j}^{\star}(\boldsymbol{\theta})$. Sampling $\boldsymbol{\theta}_{j}^{(t)} \sim \pi_{j}^{\star}(\boldsymbol{\theta})$, compute the approximation

$$
\widehat{m}(\mathbf{y} \mid M=j)=\frac{1}{S} \sum_{t=1}^{S} w_{t} f\left(\mathbf{y} \mid \boldsymbol{\theta}_{j}^{(t)}\right)
$$

where the weight w_{t} is given by

$$
w_{t}=\frac{\pi_{j}\left(\boldsymbol{\theta}_{j}^{(t)}\right)}{\pi_{j}^{\star}\left(\boldsymbol{\theta}_{j}^{(t)}\right)}=\frac{\pi\left(\boldsymbol{\beta}_{j}^{(t)} \mid \sigma_{j}^{2(t)}\right) \pi\left(\sigma_{j}^{2(t)}\right)}{\pi_{\beta}^{\star}\left(\boldsymbol{\beta}_{j}^{(t)} \mid \sigma_{j}^{2(t)}\right) \pi_{\sigma}^{\star}\left(\sigma_{j}^{2(t)}\right)} .
$$

It can be shown that the importance distribution in this fashion does not impact inference and thus should be chosen in a good way. We will use the LSE estimates and impose

$$
\begin{aligned}
\pi_{\beta}^{\star}\left(\boldsymbol{\beta}_{j} \mid \sigma_{j}^{2}\right) & =N\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}, \sigma_{j}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right) \\
\pi_{\sigma}^{\star}\left(\sigma_{j}^{2}\right) & =I G(a, b)
\end{aligned}
$$

where a and b are chosen such that $\frac{b}{a-1}=$ MSE and
3) Importance sampling on steroids. This is the last method and is similar to method 2. The difference is now that

$$
\widehat{m}(\mathbf{y} \mid M=j)=\frac{\sum_{t=1}^{S} w_{t} f\left(\mathbf{y} \mid \boldsymbol{\theta}_{j}^{(t)}\right)}{\sum_{t=1}^{S} w_{t}} .
$$

d) Here we implement a small simulation study to compare these three techniques. Suppose that model 1 and model 2 are

$$
\begin{array}{lll}
\text { Model 1: } & Y_{i}=3+0.5 x_{1 i}+1.25 x_{2 i}+e_{1 i}, & e_{1 i} \stackrel{i i d}{\sim} N(0,1) \\
\text { Model 2: } & Y_{i}=3+0.5 x_{1 i}+1.25 x_{3 i}+e_{2 i}, & e_{2 i} \stackrel{i i d}{\sim} N\left(0,1.2^{2}\right) .
\end{array}
$$

That is, not a full versus reduced model scenario. We will generate our data under model 1. To do this, we generate covariate x_{1} from $N(2,1)$ and covariates x_{2} and x_{3} from a $\operatorname{Binom}(1,0.5)$. Before we approximate the Bayes factor, we first compute the exact Bayes factor from problem 1. Here we impose that the prior distributions are

$$
\begin{array}{rlcl}
\boldsymbol{\beta}_{1} \mid \sigma_{1}^{2} & \sim N\left(\mathbf{0}_{p_{1}}, \mathbf{T}_{p_{1}}\right) & \boldsymbol{\beta}_{2} \mid \sigma_{2}^{2} & \sim N\left(\mathbf{0}_{p_{2}}, \mathbf{T}_{p_{2}}\right) \\
\sigma_{1}^{2} & \sim I G(1,1) & \sigma_{2}^{2} & \sim I G(1,1),
\end{array}
$$

where $\mathbf{0}_{p_{j}}$ is a vector of size p_{j} whose entries are all ones and $\mathbf{T}_{p_{j}}$ is a $p_{j} \times p_{j}$ diagonal matrix whose entries are all 1000 . Using this formulation, the expression in problem 1, and the generated data, the exact Bayes factor is given by

$$
B_{01}=\frac{C_{1}^{\star}}{C_{2}^{\star}} \cdot \frac{\Gamma\left(\alpha_{1}\right)}{B_{1}^{\alpha_{1}}} \cdot \frac{B_{2}^{\alpha_{2}}}{\Gamma\left(\alpha_{2}\right)}=8877.709
$$

Now, implementing the three methods, we obtained an estimated Bayes factor of

$$
\begin{array}{ll}
\text { Method 1: } & \widehat{B}_{01}=98876.07 \\
\text { Method 2: } & \widehat{B}_{01}=8961.766 \\
\text { Method 3: } & \widehat{B}_{01}=8549.591 .
\end{array}
$$

As we expected, method 1 did not work very well. Although it gave the correct decision, it does not estimate the exact Bayes factor well. Methods 2 and 3 work pretty similarly and have an approximation that is very close to the exact Bayes factor.

